a2 United States Patent

Padia et al.

US009483188B2

US 9,483,188 B2
*Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)
(65)

(63)

(1)

(52)

(58)

MULTIPLE I/O REQUEST PROCESSING IN
A STORAGE SYSTEM

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Praveen K. Padia, Sunnyvale, CA
(US); Rohit Shekhar, Sunnyvale, CA
us)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Inventors:

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.:
Filed:

15/042,408
Feb. 12, 2016

Prior Publication Data
US 2016/0162188 Al Jun. 9, 2016
Related U.S. Application Data

Continuation of application No. 14/821,861, filed on
Aug. 10, 2015, now Pat. No. 9,292,209, which is a
continuation of application No. 13/221,469, filed on
Aug. 30, 2011, now Pat. No. 9,134,909.

Int. CL.

GO6F 3/06 (2006.01)

GO6F 13/10 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC ... GO6F 3/061 (2013.01); GO6F 3/067

(2013.01); GO6F 3/0613 (2013.01); GO6F
3/0655 (2013.01); GO6F 3/0659 (2013.01);
GO6F 13/102 (2013.01); HO4L 67/1097
(2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,389,478 Bl 5/2002 Blackmore et al.
6,721,334 Bl 4/2004 Ketcham
6,920,125 Bl 7/2005 Wu
7,526,593 B2 4/2009 Mandal et al.
7,535,842 Bl 5/2009 Venables et al.
9,134,909 B2 9/2015 Padia et al.
(Continued)
FOREIGN PATENT DOCUMENTS
WO 0072532 Al 11/2000

OTHER PUBLICATIONS

Petersen, “Linux Data Integrity Extensions,” Reprinted from the
Proceedings of the Linux Symposium, Jul. 23-26, 2008, Ottawa,
Ontario, Canada, Jul. 23-26, 2008, pp. 151-156.

Gibson, “Storage Thoughts,” Storage Thoughts: A Weblog of
Thoughts on Comoputer Storage Technology, http://
storagethoughts.blogspot.com/2006/08/performance-blocks-vs-nas.
html, Aug. 14, 2006, 2 pages.

(Continued)

Primary Examiner — Idriss N Alrobaye

Assistant Examiner — Dayton Lewis-Taylor

(74) Attorney, Agent, or Firm — Randall J. Bluestone;
Erik K. Johnson

(57) ABSTRACT

A mechanism is provided to optimize performance of a
storage system. A plurality of I/O requests is received. A
subset of the plurality of I/O requests is selected. The size of
each 1/0O request of the subset of the plurality of I/O requests
is less than a predetermined size, but the combined size of
the subset of the plurality of I/O requests is greater than the
predetermined size. Furthermore, the subset of the plurality
of I/O requests is associated with a single logical unit
number. A data transfer command which includes the subset
of'the plurality of I/O requests is generated. The data transfer
command is transmitted.

5 Claims, 9 Drawing Sheets

110 REQUEST
BELOW SIZE
THRESHOLD 7,

418

'SEND DATA TRANSFER
COMMAND TO TARGET

COMBINE /0 REQUESTS TO
SAME LUN INTO A SINGLE
DATA TRANSFER COMMAND

US 9,483,188 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2008/0126641 Al
2009/0073884 Al
2010/0161936 Al
2012/0221767 Al
2015/0347035 Al

5/2008
3/2009
6/2010
8/2012
12/2015

Irish et al.
Kodama et al.
Royer et al.
Post et al.
Padia et al.

OTHER PUBLICATIONS

Nemeth et al., “Linux Administration Handbook: Second Edition,”
Pearson Education, Inc., USA, copyright 2007, first printed in
Stoughton, MA, USA, Oct. 2006, p. 115.

USPTO, “Evaluating Subject Matter Eligibility Under 35 USC 101:
Aug. 2012 Update,” www.uspto.gov/sites/default/files/patents/law/
exam/101__training_ aug2012.pdf, pp. 1-73.

U.S. Patent Nov. 1, 2016 Sheet 1 of 9 US 9,483,188 B2

1100
scsl] 102
USER-
ORIENTED j
iSCS| 104
END-TO-END P
(CONNECTION-ORIENTED) TCP
INTERNETWORK p [S108
(CONNECTIONLESS)
ETHERNET || 110
POINT-TO-POINT Y,
(LINK-ORIENTED) oy 4112
FIG. 1A
(PRIOR ART)
140 144 — 142
Z7 SCSI WRITE PDU g
P
146
HOST - R2T PDU TARGET
SERVER 148— SERVER
DATA OUT PDU
|
FIG. 1B

(PRIOR ART)

U.S. Patent Nov. 1, 2016 Sheet 2 of 9 US 9,483,188 B2

BYTE 0 1 | 2 | 3

0 0x05 RESERVED

M

202
:1\~ LENGTH

8 | LUN OR RESERVED

12

16 | INITIATOR TASK TAG

20| TARGET TASK TAG (SOLICITED) OR RESERVED (UNSOLICITED)

24| RESERVED

28 | ExpStatRN

32| RESERVED

36
204 —C
40

BUFFER OFFSET

44| RESERVED

48 | PAYLOAD

FIG. 2A
(PRIOR ART)

U.S. Patent Nov. 1, 2016 Sheet 3 of 9 US 9,483,188 B2
BYTE 0 | 1 | 2 3
0 0x85 3 | RESERVED
202 1 1 1
"4 LENGTH
8 | RESERVED
12
16 | INITIATOR TASK TAG
20 | RESIDUAL COUNT
24 | DataRN/StatRN
28 | ExpCmdRN
32| MaxCmdRN
35| COMMAND | RESERVED
STATUS |
204 — '
40 | BUFFER OFFSET
44 | RESERVED
48 | PAYLOAD
+
t__ I
FIG. 2B

(PRIOR ART)

U.S. Patent

Nov. 1, 2016

304
SERVER
1;0
5
3081~ & HOST
Z| SERVER
|_
-
O | | INTERNAL
310*‘\~8 STORAGE [
330~ APPLICATION
33271 HOST DRIVER

Sheet 4 of 9

US 9,483,188 B2

/]/ 300

318

CLIENT
U

[

326
320

CLIENT
U

L

TARGET SERVER

STORAGE CONTROLLER

TARGET DRIVER }—

328

—— 322

1324

STORAGE STORAGE
DEVICE DEVICE
340 342

FIG. 3

STORAGE
DEVICE

344

U.S. Patent Nov. 1, 2016 Sheet 5 of 9 US 9,483,188 B2

RECEIVE /0O REQUEST [402

404 NO

I/0 REQUEST
BELOW SIZE
THRESHOLD ?

406

)

ADD 1/0 REQUEST TO A QUEUE

NO

408

MULTIPLE 1/O
REQUESTS FOR
SAME LUN ?

NO

410

COMBINED
SIZE OF 1/0 REQUESTS
FOR SAME LUN EQUALS OR
EXCEEDS SIZE
THRESHOLD ?

TIMEOUT
EXPIRED ?

COMBINE I/0 REQUESTS TO 412
SAME LUN INTO A SINGLE
DATA TRANSFER COMMAND

416 <)
! 414

SEND DATA TRANSFER
COMMAND TO TARGET

FIG. 4

U.S. Patent Nov. 1, 2016 Sheet 6 of 9 US 9,483,188 B2

HOST DRIVER QUEUE VIRTUAL MEMORY

T —

508 R1 4K 100 ~—=—————-

'{ R8
508 — T~ 200 ——————
R2 K

o

S107 ™ R3 KN 7 ANenl
P

512- T~ ra S| NS s p———-
/\ ________

514 RS \L{

5161 Re ak KN\ L]
T

518 R7 KX | N onn]

520 ™"""Rg 4K

1500 - ——— ———
1600 - ——————
1700 - ——— — — —

FIG. 5
1800 - —— — ———

U.S. Patent Nov. 1, 2016 Sheet 7 of 9

}602

} 604

618
- AN ADDRESS
" LENGTH
f ADDRESS
500 LEN.GTH
PARAMETER .
BLOCK .
ADDRESS
LENGTH

}616

FIG. 6

US 9,483,188 B2

SCATTER
GATHER
ELEMENT

U.S. Patent Nov. 1, 2016 Sheet 8 of 9 US 9,483,188 B2

Y

L

Y
PERFORM DATA TRANSFER |~ 708

Y

TRANSFER PARAMETER BLOCK [~ 704

COPY 1/0 REQUESTS INTO ALLOCATED MEMORY

RECEIVE DATA TRANSFER COMMAND [702

ALLOCATE MEMORY TO RECEIVE DATA | ~706

710

END

FIG. 7

US 9,483,188 B2

Sheet 9 of 9

Nov. 1, 2016

U.S. Patent

(8)3ao1n3a
JOVHOLS

-7 4O 3AKA

8 9Old
|
| | 20v4NaINI
| | ¥Oo¥3aLdvay =
| | DRIOMIAN
_ (0€8
| oce {
_ 828
_ (S)IN3LSAS ONILYHILO -
| JOVAEILNI

(S) 30INIA FOVHOLS FTDIONVL

96 J19IONVL VYN
379v.180d _ ;
_
_
_ (Swoy |
0€6 I
_ | —pz8
_
| SYIANGA - @_\,_RMNm |
_ J0IA3a | |
| m (S)HOSSIDOU|
L
026 _ oww ovg 0z8
SININOdNOD TYNYILXT ! SININOdWOD TVNYILNI
006 008 Non

US 9,483,188 B2

1

MULTIPLE I/O REQUEST PROCESSING IN
A STORAGE SYSTEM

BACKGROUND

The disclosure relates generally to non-volatile memory
access, and more specifically to multiple I/O request pro-
cessing in a storage system.

Commercially available storage systems include large
numbers of hard disk drives operating under various control
mechanisms to record, mirror, remotely backup, and repro-
duce data. The rapidly growing amount of data requires
companies to manage the data carefully with their informa-
tion technology systems, and to assure appropriate perfor-
mance within such systems.

Communication between host applications and storage
systems is limited by the bandwidth of the storage system
and the network bandwidth. The total bandwidth of the
storage system is defined by a throughput capability and a
response time capability. Throughput is a measure of the rate
of speed at which the storage system can deliver data.
Throughput can be expressed as a data rate in terms of
gigabytes delivered per second (GB/sec). The performance
of a storage system can also be expressed in terms of
Input/Output(/O) request processing rate per seconds
Iops).

Transmission Control Protocol over Internet Protocol
(TCP/IP) is a common network protocol used by the Inter-
net. The internet Small Computer Systems Interface (iSCSI)
transport protocol is a standard which defines one approach
for accessing and transporting data over commonly utilized
communications networks. Using the iSCSI command and
instruction set, conventional Small Computer Systems Inter-
face (SCSI) commands, typically associated with commu-
nication within locally maintained storage devices, may be
encapsulated in a network-compatible protocol wrapper
allowing SCSI communication between devices in a remote
manner.

Running over layers of the TCP/IP protocol suite, iSCSI
communication in the aforementioned manner is a compu-
tationally intensive process. The principal components of
this process can be subdivided into: header processing,
protocol processing, and data movement. Header processing
includes parsing of packet headers at various layers of the
protocol, extracting relevant information from headers,
updating information as needed, performing tasks implied
by the contents of the headers, creating headers for outgoing
packets, and other related tasks. Protocol processing steps
may include performing connection setups and teardowns,
generating acknowledgements with protocol-dependent
parameters, and maintaining timers. Data movement refers
to storing and retrieving data.

Different applications can possess diverse /O patterns
and can be represented by specifically formulated work-
loads. 1/O workloads are used to represent specific 1/O
demands of some applications. In general, applications are
characterized as either requiring high throughput or fast
response time. A high GB/sec is associated with applications
which generate fewer 1/O requests but demand large
amounts of data. A fast response time is associated with
applications which generate short requests (for example,
online transaction applications). Typically, in order to facili-
tate better throughput or better TOPS, it is desirable to use
as large a packet size as possible to reduce overhead

10

15

20

25

30

35

40

45

50

55

60

65

2

associated with transmitting, receiving and processing data
that is stored in the storage system.

SUMMARY

In one illustrative embodiment, a method for optimizing
performance of a storage system is provided. The method
comprises a first processor receiving a plurality of 1/O
requests. The method further comprises the first processor
selecting a subset of the plurality of /O requests. The size
of each 1/O request of the subset of the plurality of /O
requests is less than a predetermined size, but the combined
size of subset of the plurality of /O requests is greater than
the predetermined size. Furthermore, the subset of the
plurality of I/O requests is associated with a single logical
unit number. The method further comprises the first proces-
sor generating a data transfer command comprising the
subset of the plurality of /O requests. The method further
comprises the first processor transmitting the data transfer
command to a second processor.

In another illustrative embodiment, a computer program
product for optimizing performance of a storage system is
provided. The computer program product comprises one or
more computer-readable tangible storage medium and pro-
gram instructions stored on at least one of the one or more
computer-readable tangible storage medium. The computer-
readable tangible storage medium comprises program
instructions to receive a plurality of /O requests. The
computer-readable tangible storage medium further com-
prises program instructions to select a subset of the plurality
of I/O requests. The size of each /O request of the subset of
the plurality of /O requests is less than a predetermined size,
but the combined size of subset of the plurality of I/O
requests is greater than the predetermined size. Furthermore,
the subset of the plurality of I/O requests is associated with
a single logical unit number. The computer-readable tangible
storage medium further comprises program instructions to
generate a data transfer command comprising the subset of
the plurality of /O requests. The computer-readable tangible
storage medium further comprises program instructions to
transmit the data transfer command.

In another illustrative embodiment, a computer system for
optimizing performance of a storage system is provided. The
computer system comprises one or more processors, one or
more computer-readable memories, one or more computer-
readable tangible storage medium, and program instructions
stored on at least one of the one or more storage medium for
execution by at least one of the one or more processors via
at least one of the one or more memories. The computer-
readable tangible storage medium comprises program
instructions to receive a plurality of /O requests. The
computer-readable tangible storage medium further com-
prises program instructions to select a subset of the plurality
of I/O requests. The size of each /O request of the subset of
the plurality of /O requests is less than a predetermined size,
but the combined size of subset of the plurality of I/O
requests is greater than the predetermined size. Furthermore,
the subset of the plurality of I/O requests is associated with
a single logical unit number. The computer-readable tangible
storage medium further comprises program instructions to
generate a data transfer command comprising the subset of
the plurality of /O requests. The computer-readable tangible
storage medium further comprises program instructions to
transmit the data transfer command.

US 9,483,188 B2

3

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIGS. 1A and 1B provide an overview of data storage
networking and iSCSI protocol in the context of an illus-
trative embodiment;

FIGS. 2A and 2B are exemplary diagrams, which depict
the packet formats for SCSI data transfer commands;

FIG. 3 is a block diagram of a sample computer network
in which the present invention can be implemented;

FIG. 4 is a flowchart of'a method for combining a plurality
of 1/O requests performed by a host driver in accordance
with an illustrative embodiment;

FIG. 5 is a diagram showing a plurality of I/O requests
stored in a host driver queue;

FIG. 6 is an exemplary block diagram illustrating a
parameter block comprising a scatter/gather list within a
data transfer command in accordance with an illustrative
embodiment;

FIG. 7 is a flowchart of a method for processing an
exemplary data transfer command containing a plurality of
1/0 requests performed by a target driver in accordance with
an illustrative embodiment; and

FIG. 8 illustrates internal and external components of a
host server computer in accordance with an illustrative
embodiment.

DETAILED DESCRIPTION

The following provides a high level overview of the
iSCSI protocol. The present invention is not limited to the
iSCSI protocol. The discussion below is intended only to be
illustrative, and not limiting on the invention. This discus-
sion provides a brief background to illustrate certain basic
features and concepts of the SCSI architecture, other docu-
ments are available to provide a more detailed discussion.
For example, the current evolving SCSI standard is
described in a document titled “SCSI Architecture Model-2
(SAM-2),” produced by T10, Technical Committee of the
National Committee on Information Technology Standards.

At a high level, SCSI is a family of interfaces for
requesting services from I/O devices, including hard drives,
printers, and scanners. In SCSI parlance, an individual I/O
device, such as a storage device, is called a “logical unit”
(LU). SCSI is a client-server architecture.

Communication between SCSI components can occur
over several layers of networking protocols. FIGS. 1A and
1B provide an overview of an exemplary storage networking
and the iSCSI protocol in the context of an exemplary data
storage system. As shown in FIG. 1A, the layering of
protocols for a network storage system is described in terms
of the Open System Interconnect (OSI) model 100. Accord-
ing to model 100, storage networking and communication
generally follow a layered, or hierarchical approach,
wherein a plurality of layers exist to perform selected
functions related to the processing of information.

The principal layers of the storage networking model 100,
also known as a network stack, include a SCSI layer 102, an
iSCSI layer 104, a TCP layer 106, an IP layer 108, an
Ethernet layer 110, and a physical layer 112. SCSI layer 102
implements the SCSI command set wherein storage data
operations to SCSI devices are performed and managed.
iSCSI layer 104 is responsible for transmitting and receiving
SCSI commands over a TCP/IP based network. In various
embodiments, iSCSI layer 104 transports SCSI 1/0 over an

10

15

20

25

30

40

45

50

55

60

65

4

IP network through the use of iSCSI protocol data units
(PDUs), the composition of which is illustrated below in
FIGS. 2A and 2B.

TCP layer 106 serves as the principal end-to-end network
protocol and is typically used for establishing a reliable
(connection-oriented) session between sending and receiv-
ing devices. iSCSI PDUs, contained in TCP segments, are
transmitted as TCP data. IP layer 108 serves as connection-
less service that is typically used to route data and informa-
tion between network devices. Ethernet layer 110 serves as
the media access control protocol handler to transfer Ether-
net frames across the physical link (for example, physical
network connection/layer). Physical layer 112 defines physi-
cal medium itself (for example, physical cable or connection
type) and provides the electrical and mechanical means to
maintain the physical link between systems. SCSI layer 102
and part of iISCSI layer 104 processing generally occur at a
software level whereas part of iSCSI layer 104, TCP layer
106, IP layer 108, and Ethernet layer 110 processing occur
at a hardware level.

It should be noted that as data traverses through the
networking layers described above, each networking layer
attaches its own header, which is typically fixed in size.
Hence, if data packets are transmitted in smaller units of
size, the overhead associated with networking layers would
be higher. Generally, such overhead wastes significant por-
tion of network bandwidth in just transmitting, receiving and
processing headers of different network layers. For example,
if a network bandwidth is 1 GB and the combined header
size is 1 MB (for all network layers), one can transmit 1023
MB of data as a single packet. Alternatively, if the same data
is divided into smaller packets (for example, 1 MB packets),
with the same network bandwidth one can transmit only 512
MB of data, as the other 512 MB will be occupied by
overhead associated with different network layers shown in
FIG. 1A. This example illustrates that the larger packet size
enables one to transmit more application data and thus gives
a better throughput to a data storage system. If the same data
is divided into smaller packets, the storage system needs to
process more packets to perform the same job (thus con-
suming more CPU).

FIG. 1B illustrates a high level client server model of
information exchange between a host server 140 and a target
server 142. Host server 140 can encapsulate a SCSI write
command in a SCSI write PDU 144 that may be transmitted
from host server 140 to target server 142. Upon receipt of
SCSI write PDU 144, target server 142 may respond with an
acknowledgment signal comprising a ready to transmit
(R2T) PDU 146. The information contained in R2T PDU
146 serves as a signal to host server 140 that target server
142 is ready to receive information and determines when
host server 140 will commence with data transmission in the
form of one or more data out PDUs 148.

FIGS. 2A and 2B illustrate details of the composition of
exemplary iSCSI PDU packet formats for SCSI data write
(from host server 140 to target server 142) and read (from
target server 142 to host server 140), respectively. These
packet formats and their contents are known and docu-
mented

As shown in FIGS. 2A and 2B, an iSCSI PDU comprising
a SCSI command comprises a length field 202, the Logical
Unit Number (LUN) associated with storage devices 340,
342, and 344, an offset field 204, and the like. The length
field 202 specifies the total number of bytes in the following
payload. The Buffer Offset field 204 contains the offset of
the following data against the complete data transfer. The
sum of the buffer offset and length should not exceed the

US 9,483,188 B2

5

expected transfer length for the command. Other commands
and details regarding the proposed iSCSI protocol are pub-
lished and known by persons skilled in the art, and therefore
need not be described herein in order to gain an understand-
ing of the concepts and operation of the present invention.
Indeed, the foregoing discussion has been provided merely
for purposes of illustration, and is not deemed to be limiting
upon the scope and spirit of the present invention.

FIG. 3 is a block diagram of a sample computer network
300 in which the present invention can be implemented.
FIG. 3 is an illustration of one implementation and is not
intended to imply any limitation with regard to the environ-
ments in which different embodiments may be implemented.
Many modifications to the depicted environments may be
made.

In one embodiment network 302 can be the Internet which
uses the TCP/IP suite of protocols. Network 302 may also
comprise a number of different types of networks, such as an
intranet, a local area network (LAN), or a wide area network
(WAN).

Network 302 provides communications links between
various devices and computers. Network 302 may include
connections, such as wire, wireless communication links,
fiber optic cables, or any other connection technology
known in the art.

Client computers 318 and 320 connect to network 302.
Client computers 318 and 320 may be, for example, mobile
devices, telephones, television receivers, cell phones, per-
sonal digital assistants, netbooks, laptop computers, tablet
computers, desktop computers, and/or any type of comput-
ing devices. Client computers 318 and 320 may contain user
interfaces (Uls) 326 and 328, respectively. Uls 326 and 328
can be, for example, graphical user interfaces (GUIs) or web
user interfaces (WUIs).

Server computer 304, host server computer 140, target
server computer 142 and a plurality of storage units 340,
342, and 344 also connect to network 302. Network 302 may
include additional server computers, client computers, dis-
plays and other devices not shown. Host server computer
140 is configured to communicate with storage devices 340,
342, and 344 through a host driver 332 and through target
server 142 which runs a target driver 324. Host server
computer 140 and target server computer 142 may be a
workstation, a server, a mainframe computer, a personal
computer, and the like. Host server computer 140 is respon-
sive to at least one application 330. In one embodiment, host
server 140 runs application 330. Host server computer 140
may service requests by clients 318 and 320 to application
330. In another embodiment, host server computer 140 acts
as a server to another client 318 running application 330 and
responds to requests from application 330 running on client
318. Host server computer 140 may contain an input device
308 and an output device 310.

Host server computer 140 connects to target server com-
puter 142 to access storage devices 340, 342, and 344. Target
server 142 may include an intermediary gateway server and
storage controller 322. There may be many physical storage
devices 340, 342, and 344 managed by the same target
server 142. Each storage device 340, 342, and 344 may have
a unique LUN associated with it.

Host server computer 140 includes host driver 332 con-
figured to communicate with storage devices 340, 342, and
344 through target driver 324. In one embodiment, host
driver 332 is a host SCSI driver and target driver 324 is a
SCSI storage device driver. Host driver 332 typically
receives data storage access requests from at least one
application 330 and then sends SCSI commands and data to

10

15

20

25

30

35

40

45

50

55

60

65

6

target driver 324, which is configured to communicate with
storage devices 340, 342, and 344. Target driver 324
receives data and data access responses from storage devices
340, 342, and 344 and transmits the data and data access
responses to application 330 that made a request through
host driver 332. Data access responses may include error
messages, data status information, storage device access
status information, and the like.

Host driver 332 may comprise program instructions
stored on one or more computer-readable tangible storage
devices, which may include internal storage 312 on host
server computer 140. Host driver 332 may be downloaded to
a data storage system or other device for use. Data gathered,
generated, and maintained for use by host driver 332 may be
kept in internal storage 312 of host server computer 140.

Turning now to FIG. 4, FIG. 4 is a flowchart of a method
for combining a plurality of I/O requests performed by host
driver 332 in accordance with an illustrative embodiment. At
402, host driver 332 waits for a plurality of I/O requests from
application 330. At 404, host driver 302 examines all
received /O requests to determine whether the size of each
1/O request is below a predetermined size threshold. As
previously indicated, it may be desirable to combine a
plurality of small-sized I/O requests into one data transfer
command. In an embodiment, this size threshold may be a
parameter configurable by a data storage system adminis-
trator and might depend on a network packet size. For
example, the size of the IP packet is typically limited in size.
In this exemplary embodiment the data storage system
administrator may set the size threshold parameter to be
equal 32 KB if the IP packet is limited to 64 KB. At 406, host
driver 302 adds all I/O requests that are below the prede-
termined size to a wait queue based on the logical unit
number to which the request is destined. At 408, host driver
332 checks the queue to determine whether there is a
plurality of I/O requests with the same LUN destination and
calculates the combined size for all such requests. If host
driver 332 has not received a plurality of /O requests with
the same LUN destination that are below the predetermined
size threshold, host driver 408 will wait for additional I/O
requests (402).

At 410, host driver 332 determines whether the combined
size of the plurality of I/O requests for the same LUN equals
or exceeds the predetermined size threshold. If the combined
size of the plurality of /O requests for the same LUN is less
than the predetermined threshold, host driver 332 will con-
tinue waiting for more [/O requests for a predetermined
period of time. In an embodiment, host driver 332 may set
up a timer associated with the wait queue. In other words,
host driver 332 waits until the combined size of the received
/O requests with the same LUN destination equals or
exceeds the predetermined size threshold or until the timer
associated with the wait queue expires (412). At 414, host
driver 332 generates a data transfer command by combining
multiple /O requests with the same LUN destination using,
for example, a scatter/gather list, discussed further below in
conjunction with FIG. 6. The term “scatter/gather list”, as
used herein, refers to a list of elements indicating the regions
of memory to or from which data should be transferred. In
an embodiment, such scatter/gather list may be embedded
into a new SCSI level command to augment SCSI’s current
commands. At 416, host driver 332 transmits the command
generated in 414 to target driver 324 by, for example,
encapsulating the command into SCSI write PDU 144.

FIG. 5 is a diagram showing an exemplary wait queue of
1/O requests with the same LUN destination. For illustrative
purposes, in one embodiment host driver 332 has generated

US 9,483,188 B2

7

the wait queue 502 shown in FIG. 5 by accumulating
small-sized 1/O requests with the same LUN destination in
406. In this example, wait queue 502 contains eight /O
requests, specifically R; 506, R, 508, R; 510, R, 512, R,
514, R, 516, R, 518, and R 520, of equal size (4K). For
illustrative purposes only, in one embodiment the pre-
configured size threshold parameter is set to 32 KB. In this
case, once host driver 332 makes a determination at 410 that
the combined size of requests R, 506, R, 508, R; 510, R,
512, R, 514, R, 516, R, 518, and R, 520 (32 KB) equals or
exceeds the predetermined threshold size, host driver 332
will generate a single data transfer command (416) by
combining [/O requests R, 506 through R; 520. In some
embodiments, where host driver 332 is configured to trans-
fer a plurality of /O requests through a new 16-byte long
data transfer command, host driver 332 may utilize a scatter/
gather list to embed information about each I/O request
within a 16-byte command by using a parameter block. In at
least one embodiment, at 414, host driver 332 calculates the
length of the required data transfer and updates the PDU for
a new SCSI command. Host driver 332 may calculate the
length of the required data transfer T using the following
formula:

T=P+3R,,

where P is the length of the parameter block, discussed
further below in conjunction with FIG. 6, and 2 R, represents
the combined size of all I/O requests that will be transferred
as one data transfer command. Furthermore, host driver 332
may calculate the length of the parameter block P, using the
following formula:

P=(4+S)*N,

where A represents the size of the address field 618, S
represents the size of the length field 622, and N is a number
of 1/O requests included in the command. For illustrative
purposes, in one embodiment a new SCSI data transfer
command accommodates an 8-byte long address field and
4-byte long data length field. In the example shown in FIG.
5 N is equal to 8, because there are 8 requests in the wait
queue 502. Therefore, in this scenario, host driver 332 would
calculate the parameter length P to be P=(8+4)*8=96 bytes.
Consequently, host driver 332 would calculate the length of
the required data transfer T to be T=96 bytes+32 KB.

After host driver 332 calculates a value of T, according to
this embodiment, host driver 332 may set PDU length field
202 to a value of T calculated as described above. In
addition, host driver 332 may set the buffer offset field 204
to 0.

FIG. 6 is an exemplary block diagram illustrating a
parameter block comprising a scatter/gather list within a
data transfer command in accordance with an illustrative
embodiment. As illustrated in FIG. 6, host driver 332 may
format parameter block 600 within the data transfer com-
mand as a scatter/gather list comprising a plurality of
scatter/gather elements 602, 604, and 616, each of which
includes an address field 618 identifying the Logical Block
Address (LBA) of the location on a storage device 340
to/from which the data in an /O request to be transferred and
a length field 622 indicating the amount of data that should
be transferred to/from the specified LBA. It should be noted
that each scatter/gather element represents an individual I/O
request. For example, element 602 may contain information
related to I/O request R; 506, element 604 may contain
information related to I/O request R, 508, and element 616
may contain information related to I/O request Ry 520.
Moreover, address fields 618 of parameter block 600 cor-

20

25

35

40

45

50

8

respond to I/O request addresses in virtual memory 504
which may not be contiguous, as shown in FIG. 5.

As previously indicated, at 416, host driver 332 sends the
command generated in 414 to target driver 324. FIG. 7is a
flowchart of a method for processing an exemplary data
transfer command containing a plurality of /O requests
performed by target driver 324 in accordance with an
illustrative embodiment. In this embodiment, target driver
324 is designed to process a scatter/gather list. Those skilled
in the art will recognize that a variety of well-known design
choices are available to implement a scatter/gather list
processor. FIG. 7 illustrates how target driver 324 may
process a new SCSI WRITE command. While the flowchart
of FIG. 7 will be described in reference to a new SCSI
WRITE command, those skilled in the art will recognize that
a new SCSI READ command can be processed in a similar
manner. At 702, target driver 324 receives the data transfer
command as, for instance, SCSI write PDU 144. Based on
the PDU length field 202, target driver 324 may determine
the length of the parameter block 600. At 704, target driver
324 performs a transfer of the parameter block 600. At 706,
target driver 324 allocates a block of a memory to receive the
data to be transferred based on information contained in the
parameter block 600. At 708, target driver 324 performs a
transfer of command specific user data. At 710, target driver
324 performs data transfer operations for individual 1/O
requests stored in the parameter data block in accordance
with the entries in the scatter/gather list. As shown in FIG.
6, each scatter/gather element describes the location and the
amount of data to copy. This embodiment enables target
driver 324 to service a plurality of I/O requests by process-
ing a single data transfer command.

FIG. 8 illustrates internal and external components of host
server computer 140 in accordance with an illustrative
embodiment. Host server computer 140 includes internal
components 800 and external components 900. Internal
components 800 include one or more processors 820, one or
more computer-readable RAMs 822 and one or more com-
puter-readable ROMs 824 on one or more buses 826, and
one or more operating systems 828 and one or more com-
puter-readable tangible storage devices 830. The one or
more operating systems 828, applications 330, and host
driver 332 are stored on one or more of the computer-
readable tangible storage devices 830 for execution by one
or more of the processors 820 via one or more of the RAMs
822 (which typically include cache memory). In the embodi-
ment illustrated in FIG. 8, each of the computer-readable
tangible storage devices 830 is a magnetic disk storage
device of an internal hard drive. Alternatively, each of the
computer-readable tangible storage devices 830 is a semi-
conductor storage device such as ROM 824, EPROM, flash
memory or any other computer-readable tangible storage
device that can store a computer program and digital infor-
mation.

Internal components 800 also include a R/W drive or
interface 832 to read from and write to one or more portable
computer-readable tangible storage devices 936 such as a
CD-ROM, DVD, memory stick, magnetic tape, magnetic
disk, optical disk or semiconductor storage device. Host
driver 332 can be stored on one or more of the portable
computer-readable tangible storage devices 936, read via
R/W drive or interface 832 and loaded into one or more
computer-readable tangible storage devices 830.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware

US 9,483,188 B2

9

embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the

10

15

20

25

30

35

40

45

50

55

60

65

10

flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

Referring back to FIG. 8, internal components 800 also
include a network adapter or interface 836 such as a TCP/IP
adapter card. Host driver 332 can be downloaded to host
computer sever 140 from an external computer via a net-
work (for example, the Internet, a local area network or
other, wide area network) and network adapter or interface
836. From the network adapter or interface 836, host driver
332 is loaded into one or more computer-readable tangible
storage devices 830. The network may comprise copper
wires, optical fibers, wireless transmission, routers, fire-
walls, switches, gateway computers and/or edge servers.

External components 900 include a computer display
monitor 920, a keyboard 930, and a computer mouse 934.
Internal components 800 also include device drivers 840 to
interface to computer display monitor 920, keyboard 930
and computer mouse 934. The device drivers 840, R/W drive
or interface 832 and network adapter or interface 836
comprise hardware and software (stored in one or more

US 9,483,188 B2

11

computer-readable tangible storage devices 830 and/or one
or more computer-readable ROMs 824).

Host driver 332 can be written in various programming
languages including low-level, high-level, object-oriented or
non object-oriented languages. Alternatively, the functions
ot host driver 332 can be implemented in whole or in part by
computer circuits and other hardware (not shown).

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:
1. A method for optimizing performance of a storage
system, the method comprising:

a first processor receiving a plurality of /O requests;

the first processor generating a wait queue and assigning
a plurality of small-sized 1/O requests with the same
logical unit number to the generated wait queue,
wherein each I/O request within the plurality of small-
sized 1/O requests assigned to the generated wait queue
is less than a pre-determined size;

the first processor selecting a subset of the plurality of /O
requests from the generated wait queue, wherein the
size of each I/O request of the selected subset of the

5

10

15

30

12

plurality of I/O requests is less than the predetermined
size, and wherein the combined size of each I/O request
of the selected subset of the plurality of /O requests is
greater than the predetermined size;

the first processor generating a data transfer command

based on the selected subset of the plurality of 1/O
requests assigned to the generated wait queue being
greater than the predetermined size, wherein the data
transfer command is a new single data transfer com-
mand generated by combining multiple /O requests
with the same logical unit number and combining a
plurality of data associated with each /O request of the
selected subset into a single data packet along with a
parameter block embedded within the new single data
transfer command, wherein the embedded parameter
block is formatted within the new single data transfer
command as a scatter/gather list comprising a plurality
of scatter/gather elements; and

the first processor transmitting the data transfer command

to a second processor.

2. The method of claim 1, wherein the data transfer
command is a Small Computer System Interface (SCSI)
command.

3. The method of claim 1, wherein the plurality of I/O
requests have non-contiguous virtual addresses.

4. The method of claim 1, wherein the first processor
generating the data transfer command further comprises the
first processor determining a size of data to be transferred via
the data transfer command.

5. The method of claim 1, wherein the single logical unit
number is associated with a single storage device.

#* #* #* #* #*

